AskDefine | Define hypertension

Dictionary Definition

hypertension n : a common disorder in which blood pressure remains abnormally high (a reading of 140/90 mm Hg or greater) [syn: high blood pressure] [ant: hypotension]

User Contributed Dictionary



  1. The disease or disorder of abnormally high blood pressure.



abnormally high blood pressure




Extensive Definition

Hypertension, most commonly referred to as "high blood pressure", HTN or HPN, is a medical condition in which the blood pressure is chronically elevated. It was previously referred to as nonarterial hypertension, but in current usage, the word "hypertension" without a qualifier normally refers to arterial hypertension.
Hypertension can be classified either essential (primary) or secondary. Essential hypertension indicates that no specific medical cause can be found to explain a patient's condition. Secondary hypertension indicates that the high blood pressure is a result of (i.e., secondary to) another condition, such as kidney disease or tumors (pheochromocytoma and paraganglioma). Persistent hypertension is one of the risk factors for strokes, heart attacks, heart failure and arterial aneurysm, and is a leading cause of chronic renal failure. Even moderate elevation of arterial blood pressure leads to shortened life expectancy. At severely high pressures, defined as mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.
Hypertension is considered to be present when a person's systolic blood pressure is consistently 140 mmHg or greater, and/or their diastolic blood pressure is consistently 90 mmHg or greater. Recently, as of 2003, the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure has defined blood pressure 120/80 mmHg to 139/89 mmHg as "prehypertension." Prehypertension is not a disease category; rather, it is a designation chosen to identify individuals at high risk of developing hypertension. The Mayo Clinic website specifies blood pressure is "normal if it's below 120/80" but that "some data indicate that 115/75 mm Hg should be the gold standard." In patients with diabetes mellitus or kidney disease studies have shown that blood pressure over 130/80 mmHg should be considered high and warrants further treatment.
Hypertension is labeled resistant if a person’s blood pressure remains above their target blood pressure despite taking three or more medications to lower it. The American Heart Association released a scientific statement in May 2008 with guidelines for treating resistant hypertension.

Factors of essential hypertension

Although no specific medical cause can be determined in essential hypertension, the most common form has several contributing factors. These include salt sensitivity, renin homeostasis, insulin resistance, genetics, and age.


Consumption of liquorice (which can be of potent strength in liquorice candy) can lead to a surge in blood pressure. People with hypertension or history of cardio-vascular disease should avoid Liquorice raising their blood pressure to risky levels. Frequently, if liquorice is the cause of the high blood pressure, a low blood level of potassium will also be present.
Liquorice extracts are present in many medicines (for example cough syrups, throat lozenges and peptic ulcer treatments).

Sodium sensitivity

Sodium is an environmental factor that has received the greatest attention. Approximately one third of the essential hypertensive population is responsive to sodium intake. This is due to the fact that increasing amounts of salt in a person's bloodstream causes cells to release water (due to osmotic pressure) to equilibrate concentration gradient of salt between the cells and the bloodstream; increasing the pressure on the blood vessel walls.
The effects of excess amounts of salt in the body depend on how much excess salt (or salty food) is eaten in a specific time versus how well the kidneys function. When the salt content of the blood elevates, water is attracted from around the cells (in muscles and organs) and into the blood, in order to dilute blood salinity. There is salt as sodium outside every cell in the body. When the salt content of the fluid around the cells goes up, it attracts water from the blood and swelling occurs. The kidneys are responsible for regulating salt and water levels in the body. When salt and water levels increase around cells, the excess is drawn into the blood, which is filtered by the kidneys. The kidneys remove excess salt and water from the blood, both of which are excreted as urine. When the kidneys do not work well, fluid builds up around cells and in the blood. The heart is the pump that pushes the blood around. If there is more fluid in the blood, the heart has to work harder and the blood pressure can go up because there is more pressure on the walls of the blood vessels. The heart can get weaker or worn out from the extra work.
Salt has been blamed in the past as causing high blood pressure. New research suggests that too little calcium or potassium also has an impact on blood pressure.

Role of renin

Renin is an enzyme secreted by the juxtaglomerular apparatus of the kidney and linked with aldosterone in a negative feedback loop. The range of renin activity observed in hypertensive subjects tends to be broader than in normotensive individuals. In consequence, some hypertensive patients have been defined as having low-renin and others as having essential hypertension. Low-renin hypertension is more common in African Americans than white Americans, and may explain why they tend to respond better to diuretic therapy than drugs that interfere with the renin-angiotensin system.
High Renin levels predispose to Hypertension: Increased Renin → Increased Angiotensin II → Increased Vasoconstriction, Thirst/ADH and Aldosterone → Increased Sodium Resorption in the Kidneys (DCT and CD) → Increased Blood Pressure. According to the Fifth Edition Annotated Instructor's Edition Nutrition Concepts & Controversies by authors, Eva May Nunnelley Hamilton, M.S., Eleanor Noss Whitney, Ph.d, R.D., Frances Sienkiewicz Sizer, M.S., R.D.published by West Publishing Company 1991 ISBN 0-314-81092-7 "Some authorities believe that potassium might both prevent and treat hypertension. It goes on to advise that salt avoidance may assist in lowering blood pressure in two ways, one of which is by replacing highly processed (salted foods) with natural foods which contain higher levels of potassium, and the other is by reducing salt intake.

Insulin resistance

Insulin is a polypeptide hormone secreted by cells in the islets of langerhans, which are contained throughout the pancreas. Its main purpose is to regulate the levels of glucose in the body antagonistically with glucagon through negative feedback loops. Insulin also exhibits vasodilatory properties. In normotensive individuals, insulin may stimulate sympathetic activity without elevating mean arterial pressure. However, in more extreme conditions such as that of the metabolic syndrome, the increased sympathetic neural activity may over-ride the vasodilatory effects of insulin. Insulin resistance and/or hyperinsulinemia have been suggested as being responsible for the increased arterial pressure in some patients with hypertension. This feature is now widely recognized as part of syndrome X, or the metabolic syndrome.

Sleep apnea

Sleep apnea is a common, under-recognized cause of hypertension. It is often best treated with nocturnal nasal continuous positive airway pressure, but other approaches include the Mandibular advancement splint (MAS), UPPP, tonsilectomy, adenoidectomy, sinus surgery, or weight loss.


Hypertension is one of the most common complex disorders, with genetic heritability averaging 30%. Data supporting this view emerge from animal studies as well as in population studies in humans. Most of these studies support the concept that the inheritance is probably multifactorial or that a number of different genetic defects each have an elevated blood pressure as one of their phenotypic expressions.
More than 50 genes have been examined in association studies with hypertension, and the number is constantly growing.


Over time, the number of collagen fibers in artery and arteriole walls increases, making blood vessels stiffer. With the reduced elasticity comes a smaller cross-sectional area in systole, and so a raised mean arterial blood pressure.

Other etiologies

There are some anecdotal or transient causes of high blood pressure. These are not to be confused with the disease called hypertension in which there is an intrinsic physiopathological mechanism as described below.

Etiology of secondary hypertension

Only in a small minority of patients with elevated arterial pressure, can a specific cause be identified (in 90 percent to 95 percent of high blood pressure cases, the American Heart Association says there's no identifiable cause). These individuals will probably have an endocrine or renal defect that, if corrected, could bring blood pressure back to normal values.
Hypertension produced by diseases of the kidney. This includes diseases such as polycystic kidney disease or chronic glomerulonephritis. Hypertension can also be produced by diseases of the renal arteries supplying the kidney. This is known as renovascular hypertension; it is thought that decreased perfusion of renal tissue due to stenosis of a main or branch renal artery activates the renin-angiotensin system.
Hypertension is a feature of a variety of adrenal cortical abnormalities. In primary aldosteronism there is a clear relationship between the aldosterone-induced sodium retention and the hypertension.
Both adrenal glands can overproduce the hormone cortisol or it can arise in a benign or malignant tumor. Hypertension results from the interplay of several pathophysiological mechanisms regulating plasma volume, peripheral vascular resistance and cardiac output, all of which may be increased. More than 80% of patients with Cushing's syndrome have hypertension.
In patients with pheochromocytoma increased secretion of catecholamines such as epinephrine and norepinephrine by a tumor (most often located in the adrenal medulla) causes excessive stimulation of [adrenergic receptors], which results in peripheral vasoconstriction and cardiac stimulation. This diagnosis is confirmed by demonstrating increased urinary excretion of epinephrine and norepinephrine and/or their metabolites (vanillylmandelic acid).
Hypertension can be caused by mutations in single genes, inherited on a mendelian basis.
Certain medications, especially NSAIDS (Motrin/Ibuprofen) and steroids can cause hypertension. Licorice (Glycyrrhiza glabra) inhibits the 11-hydroxysteroid hydrogenase enzyme (catalyzes the reaction of cortisol to cortison) which allows cortisol to stimulate the Mineralocorticoid Receptor (MR) which will lead to effects similar to hyperaldosteronism, which itself is a cause of hypertension.
A 2007 chiropractic pilot study indicated that some cases of hypertension may be caused by a misalignment of the atlas vertebra.
High blood pressure that is associated with the sudden withdrawal of various antihypertensive medications. The increases in blood pressure may result in blood pressures greater than when the medication was initiated. Depending on the severity of the increase in blood pressure, rebound hypertension may result in a hypertensive emergency. Rebound hypertension is avoided by gradually reducing the dose (also known as "dose tapering"), thereby giving the body enough time to adjust to reduction in dose.
Medications commonly associated with rebound hypertension include centrally-acting antihypertensive agents, such as clonidine and beta-blockers.


Most of the secondary mechanisms associated with hypertension are generally fully understood, and are outlined at secondary hypertension. However, those associated with essential (primary) hypertension are far less understood. What is known is that cardiac output is raised early in the disease course, with total peripheral resistance (TPR) normal; over time cardiac output drops to normal levels but TPR is increased. Three theories have been proposed to explain this: It is also known that hypertension is highly heritable and polygenic (caused by more than one gene) and a few candidate genes have been postulated in the etiology of this condition.

Signs and symptoms

Hypertension is usually found incidentally - "case finding" - by healthcare professionals during a routine checkup. The only test for hypertension is a blood pressure measurement. Hypertension in isolation usually produces no symptoms although some people report headaches, fatigue, dizziness, blurred vision, facial flushing, transient insomnia or difficulty sleeping due to feeling hot or flushed, and tinnitus during beginning onset or prior to hypertention diagnosis.
Malignant hypertension (or accelerated hypertension) is distinct as a late phase in the condition, and may present with headaches, blurred vision and end-organ damage.
Hypertension is often confused with mental tension, stress and anxiety. While chronic anxiety and/or irritability is associated with poor outcomes in people with hypertension, it alone does not cause it. Accelerated hypertension is associated with somnolence, confusion, visual disturbances, and nausea and vomiting (hypertensive encephalopathy).

Hypertensive urgencies and emergencies

Hypertension is rarely severe enough to cause symptoms. These typically only surface with a systolic blood pressure over 240 mmHg and/or a diastolic blood pressure over 120 mmHg. These pressures without signs of end-organ damage (such as renal failure) are termed "accelerated" hypertension. When end-organ damage is possible or already ongoing, but in absence of raised intracranial pressure, it is called hypertensive emergency. Hypertension under this circumstance needs to be controlled, but prolonged hospitalization is not necessarily required. When hypertension causes increased intracranial pressure, it is called malignant hypertension. Increased intracranial pressure causes papilledema, which is visible on ophthalmoscopic examination of the retina.


While elevated blood pressure alone is not an illness, it often requires treatment due to its short- and long-term effects on many organs. The risk is increased for:

Hypertension in Blacks: A High Risk Group

As of March 18 2008, statistics show, Blacks in Africa and in America have the highest prevalence of hypertension worldwide. At the same level of BP in Caucasians, blacks have a more severe organ complication and accelerated course of hypertension-induced target organ damage. This includes greater severity and prevalence of end stage renal disease (ESRD) requiring dialysis or transplantation, hypertensive retinopathy, systolic dysfunction and hypertensive heart failure (HHF) and sudden cardiac deaths due to hypertensive acute pulmonary edema with arrhythmias. The geometric effects of hypertension on the heart of blacks are severe, but concentric hypertrophy is commonest at the early stages. African hypertensives present late and have valvar regurgitations and greater left ventricular enlargement. There is evidence of genetic polymorphisms of adrenergic receptors and Gq which predispose Africans to more severe complications. Further, blacks require 2 or more drugs to control their blood pressure, the most effective drugs often being expensive. The combination of an angiotensin converting enzyme inhibitor - thiazidediuretic and alpha blocker (prazosin or methyldopa) seem to be very effective to treat severe hypertension,and hypertensive crises rapidly, safely and effectively in Africans. (see Eur J Clin Pharmacol 1996, 51, 45-8, Int J Cardiol 1998, 67, 81-86, Arch Drug Info 2008 , Feb 20)


Although few women of childbearing age have high blood pressure, up to 10% develop hypertension of pregnancy. While generally benign, it may herald three complications of pregnancy: pre-eclampsia, HELLP syndrome and eclampsia. Follow-up and control with medication is therefore often necessary.

Children and adolescents

As with adults, blood pressure is a variable parameter in children. It varies between individuals and within individuals from day to day and at various times of the day. The epidemic of childhood obesity, the risk of developing left ventricular hypertrophy, and evidence of the early development of atherosclerosis in children would make the detection of and intervention in childhood hypertension important to reduce long-term health risks; however, supporting data are lacking.
Most childhood hypertension, particularly in preadolescents, is secondary to an underlying disorder. Renal parenchymal disease is the most common (60 to 70%) cause of hypertension. Adolescents usually have primary or essential hypertension, making up 85 to 95% of cases.


Measuring blood pressure

Diagnosis of hypertension is generally on the basis of a persistently high blood pressure. Usually this requires three separate measurements at least one week apart. Exceptionally, if the elevation is extreme, or end-organ damage is present then the diagnosis may be applied and treatment commenced immediately.
Obtaining reliable blood pressure measurements relies on following several rules and understanding the many factors that influence blood pressure reading.
For instance, measurements in control of hypertension should be at least 1 hour after caffeine, 30 minutes after smoking or strenuous exercise and without any stress. Cuff size is also important. The bladder should encircle and cover two-thirds of the length of the (upper) arm. The patient should be sitting upright in a chair with both feet flat on the floor for a minimum of five minutes prior to taking a reading. The patient should not be on any adrenergic stimulants, such as those found in many cold medications. When taking manual measurements, the person taking the measurement should be careful to inflate the cuff suitably above anticipated systolic pressure. The person should inflate the cuff to 200 mmHg and then slowly release the air while palpating the radial pulse. After one minute, the cuff should be reinflated to 30 mmHg higher than the pressure at which the radial pulse was no longer palpable. A stethoscope should be placed lightly over the brachial artery. The cuff should be at the level of the heart and the cuff should be deflated at a rate of 2 to 3 mmHg/s. Systolic pressure is the pressure reading at the onset of the sounds described by Korotkoff (Phase one). Diastolic pressure is then recorded as the pressure at which the sounds disappear (K5) or sometimes the K4 point, where the sound is abruptly muffled. Two measurements should be made at least 5 minutes apart, and, if there is a discrepancy of more than 5 mmHg, a third reading should be done. The readings should then be averaged. An initial measurement should include both arms. In elderly patients who particularly when treated may show orthostatic hypotension, measuring lying sitting and standing BP may be useful. The BP should at some time have been measured in each arm, and the higher pressure arm preferred for subsequent measurements.
BP varies with time of day, as may the effectiveness of treatment, and archetypes used to record the data should include the time taken. Analysis of this is rare at present.
Automated machines are commonly used and reduce the variability in manually collected readings . Routine measurements done in medical offices of patients with known hypertension may incorrectly diagnose 20% of patients with uncontrolled hypertension
Home blood pressure monitoring can provide a measurement of a person's blood pressure at different times throughout the day and in different environments, such as at home and at work. Home monitoring may assist in the diagnosis of high or low blood pressure. It may also be used to monitor the effects of medication or lifestyle changes taken to lower or regulate blood pressure levels.
Home monitoring of blood pressure can also assist in the diagnosis of white coat hypertension. The American Heart Association states, "You may have what's called 'white coat hypertension'; that means your blood pressure goes up when you're at the doctor's office. Monitoring at home will help you measure your true blood pressure and can provide your doctor with a log of blood pressure measurements over time. This is helpful in diagnosing and preventing potential health problems."
Those using home blood pressure monitoring devices are increasingly also making use of blood pressure charting software. These charting methods provide printouts for the patient's physician and reminders to take a blood pressure reading.

Distinguishing primary vs. secondary hypertension

Once the diagnosis of hypertension has been made it is important to attempt to exclude or identify reversible (secondary) causes.

Investigations commonly performed in newly diagnosed hypertension

Tests are undertaken to identify possible causes of secondary hypertension, and seek evidence for end-organ damage to the heart itself or the eyes (retina) and kidneys. Diabetes and raised cholesterol levels being additional risk factors for the development of cardiovascular disease are also tested for as they will also require management.
Blood tests commonly performed include:
Additional tests often include:
  • Testing of urine samples for proteinuria - again to pick up underlying kidney disease or evidence of hypertensive renal damage.
  • Electrocardiogram (EKG/ECG) - for evidence of the heart being under strain from working against a high blood pressure. Also may show resulting thickening of the heart muscle (left ventricular hypertrophy) or of the occurrence of previous silent cardiac disease (either subtle electrical conduction disruption or even a myocardial infarction).
  • Chest X-ray - again for signs of cardiac enlargement or evidence of cardiac failure.


The level of blood pressure regarded as deleterious has been revised down during years of epidemiological studies. A widely quoted and important series of such studies is the Framingham Heart Study carried out in an American town: Framingham, Massachusetts. The results from Framingham and of similar work in Busselton, Western Australia have been widely applied. To the extent that people are similar this seems reasonable, but there are known to be genetic variations in the most effective drugs for particular sub-populations. Recently (2004), the Framingham figures have been found to overestimate risks for the UK population considerably. The reasons are unclear. Nevertheless the Framingham work has been an important element of UK health policy.


Lifestyle modification (nonpharmacologic treatment)

  • Weight reduction and regular aerobic exercise (e.g., jogging) are recommended as the first steps in treating mild to moderate hypertension. Regular mild exercise improves blood flow and helps to reduce resting heart rate and blood pressure. These steps are highly effective in reducing blood pressure, although drug therapy is still necessary for many patients with moderate or severe hypertension to bring their blood pressure down to a safe level.
  • Reducing sodium (salt) diet is proven very effective: it decreases blood pressure in about 60% of people (see above). Many people choose to use a salt substitute to reduce their salt intake.
  • Additional dietary changes beneficial to reducing blood pressure includes the DASH diet (Dietary Approaches to Stop Hypertension), which is rich in fruits and vegetables and low fat or fat-free dairy foods. This diet is shown effective based on National Institutes of Health sponsored research. In addition, an increase in daily calcium intake has the benefit of increasing dietary potassium, which theoretically can offset the effect of sodium and act on the kidney to decrease blood pressure. This has also been shown to be highly effective in reducing blood pressure.
  • Discontinuing tobacco use and alcohol consumption has been shown to lower blood pressure. The exact mechanisms are not fully understood, but blood pressure (especially systolic) always transiently increases following alcohol and/or nicotine consumption. Besides, abstention from cigarette smoking is important for people with hypertension because it reduces the risk of many dangerous outcomes of hypertension, such as stroke and heart attack. Note that coffee drinking (caffeine ingestion) also increases blood pressure transiently, but does not produce chronic hypertension.


Unless hypertension is severe, lifestyle changes such as those discussed in the preceding section are strongly recommended before initiation of drug therapy. Adoption of the DASH diet is one example of lifestyle change repeatedly shown to effectively lower mildly-elevated blood pressure. If hypertension is high enough to justify immediate use of medications, lifestyle changes are initiated concomitantly.
There are many classes of medications for treating hypertension, together called antihypertensives, which — by varying means — act by lowering blood pressure. Evidence suggests that reduction of the blood pressure by 5-6 mmHg can decrease the risk of stroke by 40%, of coronary heart disease by 15-20%, and reduces the likelihood of dementia, heart failure, and mortality from vascular disease.
The aim of treatment should be blood pressure control to <140/90 mmHg for most patients, and lower in certain contexts such as diabetes or kidney disease (some medical professionals recommend keeping levels below 120/80 mmHg). Each added drug may reduce the systolic blood pressure by 5-10 mmHg, so often multiple drugs are necessary to achieve blood pressure control.
Commonly used drugs include:

Choice of initial medication

Unless the blood pressure is severely elevated, consensus guidelines call for medically-supervised lifestyle changes and observation before recommending initiation of drug therapy. All drug treatments have side effects, and while the evidence of benefit at higher blood pressures is overwhelming, drug trials to lower moderately-elevated blood pressure have failed to reduce overall death rates.
If lifestyle changes are ineffective or the presenting blood pressure is critical, then drug therapy is initiated, often requiring more than one agent to effective lower hypertension. Which type of many medications should be used initially for hypertension has been the subject of several large studies and various national guidelines.
The ALLHAT study PMID 12479763 showed better cost-effectiveness and slightly better outcomes for the thiazide diuretic chlortalidone compared with a calcium channel blocker and an ACE inhibitor in a 33,357-member ethnically mixed study group. The 1993 consensus recommendation for use of thiazide diuretics as initial treatment stems in part from the ALLHAT study results, which concluded in 2002 that
Thiazide-type diuretics are superior in preventing 1 or more major forms of CVD and are less expensive. They should be preferred for first-step antihypertensive therapy. PMID 12479763
A subsequent smaller study (ANBP2) did not show the slight advantages in thiazide diuretic outcomes observed in the ALLHAT study, and actually showed slightly better outcomes for ACE-inhibitors in older white male patients.
Thiazide diuretics are effective, recommended as the best first-line drug for hypertension by many experts, and much more affordable than other therapies, yet they are not prescribed as often as some newer drugs. Arguably, this is partly because they are off-patent, less profitable, and thus rarely promoted by the drug industry.
The consensus recommendations of thiazide diuretics as first-line therapy for hypertension stand against a the backdrop that all blood pressure treatments have side-effects. Potentially serious side effects of the thiazide diuretics include hypercholesterinemia, and impaired glucose tolerance with consequent increased risk of developing Diabetes mellitus type 2. The thiazide diuretics also deplete circulating potassium unless combined with a potassium-sparing diuretic or supplemental potassium. On this basis, the consensus recommendations to prefer use of thiazides as first line treatment for essential hypertension have been repeatedly and strongly questioned. However as the Merck Manual of Geriatrics notes, "[t]hiazide-type diuretics are especially safe and effective in the elderly."

Advice in the United Kingdom

The risk of beta-blockers provoking type 2 diabetes led to their downgrading to fourth-line therapy in the United Kingdom in June 2006, in the revised national guidelines.

Advice in the United States

The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) in the United States recommends starting with a thiazide diuretic if single therapy is being initiated and another medication is not indicated.

Systolic hypertension

details Systolic hypertension


External links

hypertension in Arabic: ارتفاع ضغط الدم
hypertension in Min Nan: Ko-hoeh-ap
hypertension in Bulgarian: Артериална хипертония
hypertension in Bosnian: Hipertenzija
hypertension in Cebuano: Alta presyon
hypertension in Czech: Hypertenze
hypertension in German: Arterielle Hypertonie
hypertension in Estonian: Hüpertensioon
hypertension in Spanish: Hipertensión arterial
hypertension in Esperanto: Alta sangopremo
hypertension in Basque: Hipertentsio
hypertension in French: Hypertension artérielle
hypertension in Korean: 고혈압
hypertension in Indonesian: Tekanan darah tinggi
hypertension in Icelandic: Háþrýsingur
hypertension in Italian: Ipertensione arteriosa sistemica
hypertension in Kurdish: Hîpertansiyon
hypertension in Hungarian: Magas vérnyomás
hypertension in Malay (macrolanguage): Darah tinggi
hypertension in Dutch: Hypertensie
hypertension in Japanese: 高血圧
hypertension in Norwegian: Hypertensjon
hypertension in Polish: Nadciśnienie tętnicze
hypertension in Portuguese: Hipertensão arterial
hypertension in Quechua: Llasaq yawar
hypertension in Russian: Артериальная гипертензия
hypertension in Serbian: Хипертензија
hypertension in Swedish: Högt blodtryck
hypertension in Thai: โรคความดันโลหิตสูง
hypertension in Turkish: Yüksek tansiyon
hypertension in Ukrainian: Артеріальна гіпертензія
hypertension in Chinese: 高血壓

Synonyms, Antonyms and Related Words

abscess, ague, anemia, angina, angina pectoris, ankylosis, anoxia, aortic insufficiency, aortic stenosis, apnea, apoplectic stroke, apoplexy, arrhythmia, arteriosclerosis, asphyxiation, asthma, ataxia, atherosclerosis, atrial fibrillation, atrophy, auricular fibrillation, backache, beriberi heart, bleeding, blennorhea, cachexia, cachexy, cardiac arrest, cardiac insufficiency, cardiac shock, cardiac stenosis, cardiac thrombosis, carditis, chill, chills, colic, congenital heart disease, constipation, convulsion, cor biloculare, cor juvenum, cor triatriatum, coronary, coronary insufficiency, coronary thrombosis, coughing, cyanosis, diarrhea, diastolic hypertension, dizziness, dropsy, dysentery, dyspepsia, dyspnea, edema, emaciation, encased heart, endocarditis, extrasystole, fainting, fatigue, fatty heart, fever, fibrillation, fibroid heart, flask-shaped heart, flux, frosted heart, growth, hairy heart, heart attack, heart block, heart condition, heart disease, heart failure, hemorrhage, high blood pressure, hydrops, hypertensive heart disease, hypotension, icterus, indigestion, inflammation, insomnia, ischemic heart disease, itching, jaundice, labored breathing, low blood pressure, lumbago, marasmus, mitral insufficiency, mitral stenosis, myocardial infarction, myocardial insufficiency, myocarditis, myovascular insufficiency, nasal discharge, nausea, necrosis, ox heart, pain, palpitation, paralysis, paralytic stroke, paroxysmal tachycardia, pericarditis, pile, premature beat, pruritus, pseudoaortic insufficiency, pulmonary insufficiency, pulmonary stenosis, rash, rheum, rheumatic heart disease, round heart, sclerosis, seizure, shock, skin eruption, sneezing, sore, spasm, stony heart, stroke, tabes, tachycardia, thrombosis, tricuspid insufficiency, tricuspid stenosis, tumor, turtle heart, upset stomach, varicose veins, varix, ventricular fibrillation, vertigo, vomiting, wasting
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1